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A solution in the form of X-wave patterns of the complex Ginzburg-Landau equation with a harmonic
background inhomogeneity is obtained. The pattern can be attributed to the effects of the harmonic potential
and the boundary configuration and size. By varying the harmonic of the background potential, the competition
among three types of wave patterns: spiral, X, and target, is investigated by following the evolution of the
Fourier modes.
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I. INTRODUCTION

Spiral and target wave patterns have often been observed
in reaction-diffusion systems such as the Belousov-
Zhabotinsky chemical reaction �1,2�. They have also been
found in biological systems such as the cardiac muscle tissue
and slime mold colonies of Dictyostelium �3�, as well as
physical systems such as the planar dc semiconductor-gas
discharge �4� and large-aspect-ratio lasers �5�. Spiral and tar-
get waves are usually investigated theoretically by means of
the complex Ginzburg-Landau equation �CGLE�, which is a
universal model for describing the evolution of nearly coher-
ent waves. Depending on the problem involved, it can appear
in various forms involving complex coefficients and nonlin-
earities �6–9�. The CGLE has been extensively applied to
different physical, chemical, and biological systems, such as
transversely extended laser, electrohydrodynamic convection
in liquid crystal, Bose-Einstein condensate, fluid and chemi-
cal turbulence, planar gas discharge, plasma surface-wave
oscillation, bluff body motion, etc. �1–12�, and is closely
related to the nonlinear Schrödinger �13,14� or Gross-
Pitaevsky equation. Waves as well as pattern solutions of
various forms and limits of the CGLE have been theoreti-
cally investigated by several authors �4,15–17�, and it has
been found that the actual solution, in particular, the target
pattern, strongly depends on the medium inhomogeneity and
the boundary condition.

Existing results indicate that singly charged spiral solu-
tions of the two-dimensional �2D� CGLE are dynamically
stable in some parameter regimes �9�, but spirals with zero
topological charge are always unstable. Target waves arising
from boundary effects have also been observed �15�. By in-
troducing localized inhomogeneity in the CGLE, Hendrey
and co-workers �16,17� found that stationary and breathing
target waves can also occur. Stationary target patterns have
been observed in the light-sensitive Belousov-Zhabotinsky
reaction �18�.

On the other hand, X- or cross-shaped wave patterns have
also been observed in various physical systems. They are
well known in the context of linear propagation of acoustic
and electromagnetic waves �19–23�. By using beam-shaping
techniques, one can also obtain X waves in optical �24� and
microwave radiation �25�. Recently, in connection with self-
trapped optical wave packets the investigation of X waves

has been extended to the nonlinear regime �26–28�. X waves
can be spontaneously generated because of nonlinearities in
the source or medium through wave-matter interaction. They
have been found to be rather robust and can propagate or
survive for long times or distances. Such waves can thus be
expected in many fields. In this paper, we show numerically
that if the medium is quadratic, or harmonic, the CGLE can
admit X-wave solutions. The formation and stability behav-
ior of the latter are explored. It is found that the X-shaped
patterns depend on the harmonic number of the inhomoge-
neity as well as the boundary condition, and that they are
robust.

The paper is organized as follows: In Sec. II, the problem
is formulated. In Sec. III, we numerically investigate the
generation of spiral-, X-, and target-wave patterns. In Sec.
IV, the competition among the three types of wave patterns is
analyzed. The formation of X waves is investigated in terms
of the system size and the background inhomogeneity. In
Sec. V, the effects of the boundary shape and type as well as
the stability of the X wave is studied. The results are sum-
marized and discussed in the final section.

II. FORMULATION

The 2D CGLE of interest here is given by

�t� = ��x�� + �1 + i����
2 � − �1 + i�����2� , �1�

where ��x ,y , t� is a complex function of time t and space x,
and ��

2 =�x
2+�y

2. Equation �1� is a universal model for many
phenomena near the threshold of a long-wavelength oscilla-
tory instability. In Eq. �1�, ��x� characterizes the property of
the medium and gives the linear frequency and/or the growth
and/or damping rate of the normal oscillations, the second
term corresponds to spatial diffusion �real part� and dissipa-
tion �imaginary part�, and the last term corresponds to the
nonlinear effects �with an imaginary part describing the non-
linear frequency shift�. In the limit �� ,��→�, Eq. �1�
reduces to the widely investigated cubic nonlinear
Schrödinger or Gross-Pitaevsky equation. Depending on the
parameters � and �, defect or phase turbulence of the com-
plex quantity � may occur, resulting in spatiotemporal
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chaotic solitons �9,29�.
In the limit �=1, analysis of the local bifurcation proper-

ties indicates that the plane-wave solution �29�,
�=�1−k2ei�k·x−�t� with �k��1 and frequency �=�+ ��
−��k2, is linearly stable in the range �k��kc with

kc=��1+��� / �3+��+2�2�. The stability range vanishes at
the Benjamin-Feir-Newell line ��=−1, and no stable plane-
wave solution exists for ���−1. For a wide range of � and
�, the 2D CGLE �1� possesses rotating spiral solutions in the
form �30�

FIG. 1. �Color online� Ex-
amples of the three stationary
wave patterns at t=200. The la-
bels �a�, �b�, and �c� correspond to
three subplots of the first row
�from the left to right� and �d�, �e�,
and �f� correspond to three sub-
plots of the second row. �a�, �b�,
and �c� give the amplitude
���x ,y , t�� and �d�, �e�, and �f�
give the corresponding real part
Re ��x ,y , t�. The parameters of
the CGLE are �� ,��= �3.5,
−0.34�, and the size of the system
is L=200	200. The correspond-
ing external frequencies are 
=0
in �a� and �d�, 
=0.01 in �b� and
�e�, and 
=0.02 in �c� and �f�.

FIG. 2. �Color online� The evolution of the amplitude ���0,0 , t�� at the center of the simulated system for 
=0, 0.01, and 0.02,
corresponding to the spiral, X, and target patterns, respectively.
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��r,�,t� = F�r�ei�−�t+m�+��r��

with �=0 at the spiral core. For a target wave �i.e., when
�=0�, concentric oscillations propagate from an oscillatory
centrum.

In many physical applications of the CGLE, the medium
is inhomogeneous, or �=��x�. In this case stable superspiral
�31� as well as target waves can appear if there is exponential
spatial dependence in both the real and imaginary parts of
��r� �16,17�. It has been found that the lowest-order effect of
the inhomogeneity is a strong dependence of the local fre-
quency and growth rate of the excitation in space �16,17�.
Here we shall use the often-invoked harmonic- or quadratic-
potential model �7,8� for the inhomogeneity: ��r�=1
− 1

2
2r2. Physically, this dependence approximates the bot-
tom of any trapping potential. It allows trapping of waves or
particles in a simple potential well, and the corresponding
Einstein frequency is 
 �32�. Such a potential has often been
associated with classical systems describing crystal structure,
as well as with the more recent vortex-dynamics systems
such as that related to Bose-Einstein condensates �33–36�. It
is also used in more practical systems such as optical-fiber
and plasma guides and traps �7,8�. The potential can appear
naturally �as in crystals�, manufactured �as in optical fibers�,

or externally introduced �such as by electric and magnetic
fields in plasmas and rotation in fluids�, or by other means
�such as by shining laser light on the light-sensitive
Belousov-Zhabotinsky reaction �18��.

By means of numerical experiments, we look for wave-
pattern solutions of Eq. �1� for different 
. For definitive-
ness, we shall assume �=3.5 and �=−0.34, that are typical
for studying spiral waves �29�. The numerical solution is
performed using fast Fourier transform for the space vari-
ables x and y, and a variable-step fourth-order Runge-Kutta
scheme for the time variable. Such a periodic boundary con-
dition approach is applicable to many physical systems and
is frequently used in numerical simulations. Unless other-
wise stated, the system size is L=200	200, and the number
of Fourier modes is taken to be between 27	27 and 29

	29. As an initial condition, in order not to favor any par-
ticular type of solution, we use a random distribution of
small-amplitude fluctuations. For 
=0, it is found that any
initial condition consisting of small-amplitude waves with a
topological charge will rapidly evolve into spiral waves.

III. SPIRAL-, X-, AND TARGET WAVES

Three types of wave patterns corresponding to 
=0, 0.01,
and 0.02 are shown in Figs. 1�a�–1�c�, respectively. The

FIG. 3. �Color online� Spectral structures corresponding to Fig. 1. �a�, �b�, and �c� give the spectral amplitude ���km ,kn , t�� and �d�, �e�,
and �f� give the average spectrum ����km ,kn , t���m. The external frequencies are �a� and �d�: 
=0, �b� and �e�: 
=0.01, and �c� and �f�:

=0.02, corresponding to the spiral, X, and target patterns, respectively.
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snapshots are taken at t=200. The upper row shows
���x ,y , t�� and the lower row shows Re ��x ,y , t�. Figure
1�a� shows that when 
=0, the amplitude represents a point
source in a spiral core, corresponding to a typical spiral pat-
tern for the real part Re �, given in Fig. 1�d�, of the complex
field ��x ,y , t�. Recall that the real part and the phase of the
latter are, in general, of the same topological structure. The

case 
=0.02 corresponds to the stationary target-wave pat-
tern and has been investigated for homogeneous as well as
inhomogeneous CGLE �16,17�. The spirals rotate in time at
the Hopf frequency � given by the imaginary part of the
eigenvalue found in the linear analysis. The homogeneous
case yields spirals with the same frequency �. The spiral
centers can be identified by the dark spots in the amplitude
plot given by Fig. 1�a� or as the center of the spiral waves in
the Re � phase plot, given by Fig. 1�d�. However, when the
homogeneity is destroyed by an external harmonic potential,
the wave energy propagates from the outer domain to the
center within a short time, leading to the disappearance of
the point singularity at the center of the spiral waves. As long
as 
 is sufficiently larger than the characteristic oscillation
frequency � of the system, most of the energy is concen-
trated in the center region of the system and the phase be-
comes concentric oscillations propagating from an oscilla-
tory centrum. When the equilibrium corresponding to these
two frequencies is reached before the waves from the center
can arrive at the boundary, one easily gets a stationary target-
wave pattern. The corresponding patterns of ��� and Re �
are shown in Figs. 1�c� and 1�f�.

However, if the interaction of the outward wave with the
boundary occurs before equilibrium is reached, the boundary
effect would lead to a new spatially local wave pattern,
whose amplitude maxima are at the centers of the four
boundary walls. The role of the real part �Fig. 1�d�� of the
complex field �or the phase� is enhanced by the boundary
effect. The balance between dispersion and trapping by the
harmonic background potential as well as the walls results in
an interesting X-wave structure, as shown in Fig. 1�b�. It is
found that the very-well-defined coherent X pattern can oc-
cur in the parameter regime 
� �0.005,0.015�. Unlike the
spiral waves, the existence of X waves depends sensitively
on the size of the system �with fixed 
�, a property which
will be further discussed below. Finally, it is worth noting
that the three wave patterns in Figs. 1�d�–1�f� are of similar
topological structure as that of low-dimensional phase trajec-
tories �with respect to the node-, saddle- and center-point
behavior� in dynamical systems. This similarity leads to the
still unanswered question of whether there is topological re-
lationship between low- and infinite-dimensional systems, a
problem that is beyond the scope of the present work.

To see how the external harmonic potential affects the
formation of the wave patterns, we have also analyzed the
time evolution of the wave amplitude at the system center.
Figure 2 shows that the defect in the spiral waves can occur
in the presence of the external potential. An initial core with
low energy can absorb traveling waves and rapidly become a
high-energy center because of the harmonic potential. On the
other hand, dispersion can cause an outflow of wave energy.
A stationary state occurs when a balance among dispersion
and/or dissipation, harmonic-potential trapping, and nonlin-
ear effects is reached. Figure 2 shows that with different 

values, stationary wave patterns are eventually formed, and
the time needed to reach the asymptotic stationary state be-
comes shorter with increasing 
. We note that the formation
of the X wave is associated with a long �5� t�110� evolu-
tion time, while the target wave reaches its final stationary
state already at t	50.

FIG. 4. �Color online� Evolution of the first 15 averaged spectral
amplitudes �inset� ����km ,kn , t���m �for n=0, . . . ,14� for �a� 
=0,
�b� 
=0.01, and �c� 
=0.02, corresponding to the spiral, X, and
target patterns, respectively. The very distinct evolution character-
istics �see text� of the three wave patterns can be observed.
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IV. FORMATION OF X WAVES

In order to better understand the X waves, it is useful to
analyze the energy distribution associated with the coherent
patterns and their formation. The 2D Fourier spectrum
���km ,kn��, where km and kn are the wave numbers in the x
and y directions, are given in Fig. 3. The parameters are the
same as that for Fig. 1. One can see that each wave pattern
has a distinct spectral distribution. For the spiral wave �Fig.
3�a��, much of the energy is nonuniformly distributed in a
ring structure and there is a dip at k=0. For the X wave �Fig.
3�b��, the energy is distributed in the form of concentrate
squares, with the energy maxima in each square at the four

corners. The absence of the isotropic ring structure here im-
plies a dominance of the wall effects. For the target wave
�Fig. 3�c��, we again have an isotropic, but now table-top
structure. Since the energy spectra for the three patterns ex-
hibit x ,y symmetry, for analyzing the energy distribution
more quantitatively one can take the mode average over one
of the two wave-number spaces. In Figs. 3�d�–3�f�, we show
����km ,kn , t���m, where �¯�m indicates that the average has
been taken over the Fourier modes in the x direction. For the
spiral wave �Figs. 3�a� and 3�d��, the spectrum is peaked at
kn= ±10 and its decrease as �kn�→0 is almost monotonic. For
the X wave �Figs. 3�b� and 3�e��, the spectrum is sharply

FIG. 5. �Color online� Dependence of the am-
plitude ���x ,y , t=200�� on the size of the system.
�a� L=400	400, �b� L=300	300, �c� L=200
	200, and �d� L=100	100. The other param-
eters are the same as in Fig. 1.

FIG. 6. �Color online� Depen-
dence of the amplitude at the sys-
tem center �triangles� and the
boundary point �Lx /2 ,0� �circles�
on 
 at t=200 for L=100	100,
�=3.5, and �=−0.34. The transi-
tion from the X to the target pat-
tern as 
 increases can be seen
from the insets.

X-WAVE SOLUTIONS OF COMPLEX GINZBURG-LANDAU¼ PHYSICAL REVIEW E 73, 026209 �2006�

026209-5



peaked at the two modes kn= ±5, and the energy decrease as
�kn�→0 is in an oscillatory manner. Most of the energy is in
the modes kn= ±5 and their neighbors kn= ±4, ±6. For the
target waves �Figs. 3�a� and 3�d��, on the other hand, most of
the energy is evenly distributed among the first 13 modes
kn=0, ±1, . . . , ±6.

In the formation process of the coherent patterns, energy
exchange or cascade among the different Fourier modes
plays an important role. To investigate this, we follow the
evolution of the average energy of the first 50 modes starting
from the initial random state. The results are given in Fig. 4.
Distinct evolution behavior of the three patterns can be ob-
served. To which pattern the system eventually evolves de-

pends on how energy is partitioned. For the spiral wave, the
nonlinear mode-mode interaction is quite complicated. Fig-
ure 4�a� shows that an energy exchange among the modes
between kn=1 and kn=9 always occurs for t50. Thus, the
spiral-wave solution found here appears to be a stationary
solution of the 2D CGLE. Figures 4�b� and 4�c� show that
for both the X and target waves, no mode-mode energy ex-
change takes place after a certain time, indicating that these
patterns are stationary or quasistationary. The times needed
to form stationary coherent states are approximately 110 and
50 for the X and target waves, respectively. Moreover, the
energy cascade or self-organization process in the Fourier
space for these two patterns is completely different. For tar-

FIG. 7. �Color online� Evolu-
tion of a perturbed X pattern. The
field at t=200 in Fig. 1�b� is per-
turbed by adding a phase eim�

�with charge m=3� in the period
t=200–205. �a�, �b�, and �c� show
the transient states of the ampli-
tude ���x ,y , t�� at t=201.109,
227.641, and 302.503. �d� shows
the final asymptotic or stationary
state.

FIG. 8. �Color online� The phase
�Im ��x ,y , t�� states corresponding to the evolu-
tion of the perturbation in Fig. 7. The phase scale
is in arbitrary units.
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get waves, the energy in the higher-order modes �kn7� is
first partitioned, then the energy among the low-order modes
�k=0, . . . ,7� is reorganized during 20� t�50 until the pro-
cess stops. Figure 4�b� shows that for the X wave there exist
two independently interacting groups of modes. The two
groups are separated by the modes kn=8,9 ,10, that do not
exchange their energy among themselves nor with the other
modes. On the other hand, during 20� t�110 strong energy
exchange is observed in each of the two �0�kn�7 and
11�kn�14� interacting groups. Thus, the formation of the
patterns can be distinguished by the energy partition process
among the Fourier modes.

Having discussed the energy partition process of the three
coherent wave patterns, we now consider the mechanism of
forming them. The dynamics of the spiral and target waves
has already been discussed in the existing literature
�9,16,17�. It is believed that the formation of target waves is
due to boundary �5,15� or local-inhomogeneity �16,17� ef-
fects. With the latter mechanism, Hendrey and co-workers
�16,17� found that the lowest-order inhomogeneity effect is
sufficient to form a target wave. On the other hand, as
pointed out by Aranson et al. �5� in connection with a modi-
fied complex Swift-Hohenberg equation, boundary effects
are important in selecting the different patterns in large-
aperture lasers. They showed that traveling waves with well-
defined wave numbers emitted by the boundary can collide
in the interior of the domain, forming a sink with shocklike
structure. It is thus of interest to see if a similar mechanism
can lead to the X-shaped coherent wave pattern. To investi-
gate boundary-driven selection processes for the different
patterns, we fix 
=0.01 and vary the size of the system. As
shown in Fig. 1�b�, the parameter values 
=0.01 and
L=200	200 result in an X wave. In order to see the bound-
ary dependence, we consider three cases: L=400	400,
300	300, and 100	100. Figure 5 shows the amplitude of

��x ,y , t=200� for different system sizes. Figure 5�a� indi-
cates that for a large system the final asymptotic state is a
target pattern. In Fig. 5�b�, where L=300	300, one can see
that a weak X wave is seeded within a target pattern. With
decreasing system size, the X-wave pattern becomes domi-
nant, as shown in Figs. 5�c� and 5�d�. It is thus clear that,
besides the external harmonic potential, size and boundary
effects are important in determining if X waves can occur.

V. EFFECT OF SIZE, BOUNDARY,
AND INHOMOGENEITY

To illustrate the effects of size, boundary, and the har-
monic parameter 
 on the X wave, we first consider the
shocklike structure at the boundary. Figure 6 shows the am-
plitude ���Lx /2 ,Ly /2�� at the center of the system and the
structural parameter SLx/2,0
 ��x��Lx/2,0 for different 
 val-
ues. With increasing 
, the amplitude becomes larger until
the energy at the center saturates. Figure 6 shows that an X
wave appears when 
=0.004. When 
=0.018, the X wave
becomes clearly defined. When 
 is further increased, a tar-
get wave with an embedded X wave at the center starts to
appear. When 
�0.035, only the target wave remains.

The stability of the X pattern with respect to topological-
charge perturbations should be considered. For convenience,
we start with the X wave at ��t=200� as given in Fig. 1�b�.
To simulate the perturbation, we add topological charges to
the complex field by letting ��x ,y , t�=��x ,y , t−�t�eim�,
where the charge is m=3 and �t is the time step in the
calculation, �=tan−1�x /y�. The perturbation persists for
t=200–205. That is, the perturbation is represented by the
azimuthal phase eim� and it is not of small amplitude. Since
we have shown above that when the initial condition consists
of small amplitude waves with topological charge the system

FIG. 9. Evolution of the X
wave appearing in 1�b� with the
inhomogeneity turned off �
 set
to zero� at t=200. �a� and �c� show
the amplitude ����x ,y , t��� and
phase �Im ��x ,y , t�� of the tran-
sient state at t=202.48, respec-
tively. �b� and �d� show the same
parameters for the asymptotic
state at t=400.
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can rapidly evolve into a spiral wave, one might expect that
the X pattern might be destroyed by the present topologically
charged nonlinear perturbation. This turns out to be not the
case. Figure 7�a� is a snapshot taken at t=201.109. It shows
that as soon as the perturbation is introduced at t=200, the
symmetric X pattern is rapidly disrupted. The corresponding
phase, shown in Fig. 8�a�, also reveals fine structuring near
the system center. Later in the evolution, target-like and

spiral-like patterns appear, but in a piecewise manner, as
shown in Figs. 8�b� and 8�c�. However, eventually the origi-
nal X pattern is recovered, as shown in Figs. 7�d� and 8�d�.
Thus, the X wave appears to be stable to topological-charge
perturbations. Since the finite-amplitude perturbed state can
also be considered as a new initial state, this analysis also
implies that the X wave does not depend on the initial con-
ditions. It is only governed by the harmonic-potential param-

FIG. 10. �Color online� Sta-
tionary patterns for circular �a�
and square �b� absorbing bound-
aries. The radius of the circular
domain is R=80, and the side
of the square domain is L=160.
The parameters of the CGLE are
�=3.5, �=−0.34, and 
=0.01.
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eter 
, the boundary configuration, and the system size.
We have shown that with a random initial distribution of

energy, the X-wave solution can only be obtained in the pres-
ence of the harmonic inhomogeneity. An unsolved question
is whether the X wave can also be a stationary solution of the
homogeneous CGLE. To answer this question, we start with
the X wave at ��t=200� as given in Fig. 1�b�, and turn off
the harmonic inhomogeneity at t=200 by setting 
=0. In
Fig. 9 we see that in the asymptotic state almost all of the
energy becomes concentrated in the cross region of the sys-
tem. Except at the center point, the energy is also more uni-
formly spread inside the cross. This behavior can be ex-
pected since in the absence of the trapping potential the
background is uniform. By comparing Figs. 9�a� and 9�b�,
we see that the cross-wave pattern evolves very slowly, with
more and more localization of energy in the cross. Compar-
ing Figs. 9�c� and 9�d� we also note that the oscillation pe-
riod becomes much longer as the asymptotic state is reached.
This further indicates that the stationary X-wave solution
may be associated with an intrinsic state of CGLE. However,
in order to obtain such a stationary solution dynamically for
a homogeneous system, appropriated initial conditions must
be used.

Finally, we consider two additional types of boundaries.
Figures 10�a� and 10�b� show ���t=200�� for absorbing �in
the sense that there is an infinitely deep potential well there
�5�� circular and square boundaries, respectively. In Fig.
10�a�, we see that although the system is azimuthally sym-
metric, one still finds an X wave at the center, with a fairly
uniform energy distribution. However, the well-defined in-
tense X-wave pattern in Fig. 1�b� for the periodic-boundary
case is not recovered. We can better preserve �trap� the en-
ergy by increasing 
, but then the asymptotic state becomes
a target wave �not shown�, trapped at the center by the strong
harmonic potential. Figure 10�b� shows the stationary state
for an absorbing square boundary. The pattern consists of a
double-cross structure. In these figures the cross patterns are
of much lower energy �compared with that for periodic
boundary� because the energy is more uniformly spread
across the domain as well as absorbed by the boundary.
Thus, we can conclude that the well-defined single-X pattern
appearing in Fig. 1 is dependent on the boundary as well as
the harmonic potential, but for different boundary and har-
monic conditions it can appear and behave quite differently.

VI. CONCLUSION

In an infinite homogeneous system, the waves form a con-
tinuum in the wave-number space. The existence of bound-
ary and inhomogeneity severely limits the selection of wave
numbers. As a result, the possible solutions necessarily de-
pend on the boundary and inhomogeneity conditions. By
varying the degree of the harmonic inhomogeneity, we have
shown that, depending on the latter, three different types of
wave patterns can appear as stationary solutions of the
CGLE. In particular, we have shown that an inhomogeneous
2D CGLE in the presence of a simple harmonic potential
admits an X-wave solution. The latter can be attributed to
collision of outward traveling waves with the system bound-
ary. Depending on the harmonics of the inhomogeneity, one
can obtain spiral, target, as well as X patterns. By analyzing
the energy spectra as well as by following the evolution of
the nonlinear phase perturbation, we have shown that the X
waves are nonspreading and quite robust, as have been ob-
served experimentally. We have also introduced a simple
method to control the formation of different coherent pat-
terns through the background harmonic potential in the 2D
CGLE.

It should be pointed out that the X waves are fundamen-
tally different from the spiral and target waves. Their prop-
erties as well as their relation to other localized phenomena,
such as solitons and oscillons, still remain to be investigated.
On the other hand, since the CGLE has been invoked as a
paradigm in a large number of physical, chemical, biological,
and other systems �1–7,9–12,15–28�, the present results on
the robust nonspreading X-wave pattern indicate that the lat-
ter can occur in many different systems, and can thus under-
line future applications. On the other hand, the general prop-
erties and exact existence conditions of the X �or double-X�
waves are still unknown, and should be of much interest for
further analytical and experimental investigations.
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